sinergym.utils.wrappers.LoggerWrapper
- class sinergym.utils.wrappers.LoggerWrapper(env: ~gymnasium.core.Env, logger_class: ~typing.Callable = <class 'sinergym.utils.logger.CSVLogger'>, monitor_header: ~typing.List[str] | None = None, progress_header: ~typing.List[str] | None = None, flag: bool = True)
- __init__(env: ~gymnasium.core.Env, logger_class: ~typing.Callable = <class 'sinergym.utils.logger.CSVLogger'>, monitor_header: ~typing.List[str] | None = None, progress_header: ~typing.List[str] | None = None, flag: bool = True)
CSVLogger to log interactions with environment.
- Parameters:
env (Env) – Original Gym environment in Sinergym.
logger_class (CSVLogger) – CSV Logger class to use to log all information.
monitor_header – Header for monitor.csv in each episode. Default is None (default format).
progress_header – Header for progress.csv in whole simulation. Default is None (default format).
flag (bool, optional) – State of logger (activate or deactivate). Defaults to True.
Methods
__init__
(env[, logger_class, ...])CSVLogger to log interactions with environment.
Activate logger if its flag False.
class_name
()Returns the class name of the wrapper.
close
()Recording last episode summary and close env.
Deactivate logger if its flag True.
get_wrapper_attr
(name)Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.
has_wrapper_attr
(name)Checks if the given attribute is within the wrapper or its environment.
render
()Uses the
render()
of theenv
that can be overwritten to change the returned data.reset
([seed, options])Reset the environment.
set_wrapper_attr
(name, value)Sets an attribute on this wrapper or lower environment if name is already defined.
step
(action)Sends action to the environment.
wrapper_spec
(**kwargs)Generates a WrapperSpec for the wrappers.
Attributes
action_space
Return the
Env
action_space
unless overwritten then the wrapperaction_space
is used.metadata
Returns the
Env
metadata
.np_random
Returns the
Env
np_random
attribute.np_random_seed
Returns the base environment's
np_random_seed
.observation_space
Return the
Env
observation_space
unless overwritten then the wrapperobservation_space
is used.render_mode
Returns the
Env
render_mode
.spec
Returns the
Env
spec
attribute with the WrapperSpec if the wrapper inherits from EzPickle.unwrapped
Returns the base environment of the wrapper.
- activate_logger() None
Activate logger if its flag False.
- close() None
Recording last episode summary and close env.
- deactivate_logger() None
Deactivate logger if its flag True.
- logger = <Logger WRAPPER LoggerWrapper (INFO)>
- reset(seed: int | None = None, options: Dict[str, Any] | None = None) Tuple[ndarray, Dict[str, Any]]
Reset the environment. Recording episode summary in logger
- Parameters:
seed (Optional[int]) – The seed that is used to initialize the environment’s episode (np_random). if value is None, a seed will be chosen from some source of entropy. Defaults to None.
options (Optional[Dict[str, Any]]) – Additional information to specify how the environment is reset. Defaults to None.
- Returns:
Current observation and info context with additional information.
- Return type:
Tuple[np.ndarray,Dict[str,Any]]
- step(action: int | ndarray) Tuple[ndarray, float, bool, bool, Dict[str, Any]]
Sends action to the environment. Logging new information in monitor.csv.
- Parameters:
action (Union[int, float, np.integer, np.ndarray, List[Any], Tuple[Any]]) – Action selected by the agent.
- Returns:
Observation for next timestep, reward obtained, Whether the episode has ended or not, Whether episode has been truncated or not, and a dictionary with extra information
- Return type:
Tuple[np.ndarray, float, bool, Dict[str, Any]]