sinergym.utils.wrappers.VariabilityContextWrapperï
- class sinergym.utils.wrappers.VariabilityContextWrapper(*args, **kwargs)ï
- __init__(*args, **kwargs)ï
Wraps an environment to allow a modular transformation of the
step()andreset()methods.- Parameters:
env â The environment to wrap
Methods
__init__(*args, **kwargs)Wraps an environment to allow a modular transformation of the
step()andreset()methods.class_name()Returns the class name of the wrapper.
close()Closes the wrapper and
env.get_wrapper_attr(name)Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.
has_wrapper_attr(name)Checks if the given attribute is within the wrapper or its environment.
render()Uses the
render()of theenvthat can be overwritten to change the returned data.reset(*[, seed, options])Uses the
reset()of theenvthat can be overwritten to change the returned data.set_wrapper_attr(name, value, *[, force])Sets an attribute on this wrapper or lower environment if name is already defined.
step(action)Executes an action and updates the environment's context if needed.
wrapper_spec(**kwargs)Generates a WrapperSpec for the wrappers.
Attributes
action_spaceReturn the
Envaction_spaceunless overwritten then the wrapperaction_spaceis used.metadataReturns the
Envmetadata.np_randomReturns the
Envnp_randomattribute.np_random_seedReturns the base environment's
np_random_seed.observation_spaceReturn the
Envobservation_spaceunless overwritten then the wrapperobservation_spaceis used.render_modeReturns the
Envrender_mode.specReturns the
Envspecattribute with the WrapperSpec if the wrapper inherits from EzPickle.unwrappedReturns the base environment of the wrapper.
- logger = <Logger WRAPPER VariabilityContextWrapper (INFO)>ï
- step(action: ndarray) Tuple[ndarray, SupportsFloat, bool, bool, Dict[str, Any]]ï
Executes an action and updates the environmentâs context if needed.
- Parameters:
action (np.ndarray) â Action selected by the agent.
- Returns:
Observation for next timestep, reward obtained, Whether the episode has ended or not, Whether episode has been truncated or not, and a dictionary with extra information
- Return type:
Tuple[np.ndarray, SupportsFloat, bool, bool, Dict[str, Any]]