sinergym.utils.wrappers.MultiObsWrapper
- class sinergym.utils.wrappers.MultiObsWrapper(env: EplusEnv, n: int = 5, flatten: bool = True)
- __init__(env: EplusEnv, n: int = 5, flatten: bool = True) None
Stack of observations.
- Parameters:
env (EplusEnv) – Original Gym environment.
n (int, optional) – Number of observations to be stacked. Defaults to 5.
flatten (bool, optional) – Whether or not flat the observation vector. Defaults to True.
Methods
__init__
(env[, n, flatten])Stack of observations.
class_name
()Returns the class name of the wrapper.
close
()Closes the wrapper and
env
.get_wrapper_attr
(name)Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.
render
()Uses the
render()
of theenv
that can be overwritten to change the returned data.reset
([seed, options])Resets the environment.
step
(action)Performs the action in the new environment.
wrapper_spec
(**kwargs)Generates a WrapperSpec for the wrappers.
Attributes
action_space
Return the
Env
action_space
unless overwritten then the wrapperaction_space
is used.metadata
Returns the
Env
metadata
.np_random
Returns the
Env
np_random
attribute.observation_space
Return the
Env
observation_space
unless overwritten then the wrapperobservation_space
is used.render_mode
Returns the
Env
render_mode
.reward_range
Return the
Env
reward_range
unless overwritten then the wrapperreward_range
is used.spec
Returns the
Env
spec
attribute with the WrapperSpec if the wrapper inherits from EzPickle.unwrapped
Returns the base environment of the wrapper.
- logger = <Logger WRAPPER MultiObsWrapper (INFO)>
- reset(seed: int | None = None, options: Dict[str, Any] | None = None) Tuple[ndarray, Dict[str, Any]]
Resets the environment.
- Returns:
Stacked previous observations.
- Return type:
np.ndarray
- step(action: int | ndarray) Tuple[ndarray, float, bool, bool, Dict[str, Any]]
Performs the action in the new environment.
- Parameters:
action (Union[int, np.ndarray]) – Action to be executed in environment.
- Returns:
Tuple with next observation, reward, bool for terminated episode and dict with extra information.
- Return type:
Tuple[np.ndarray, float, bool, Dict[str, Any]]