sinergym.utils.wrappers.MultiObsWrapper
- class sinergym.utils.wrappers.MultiObsWrapper(*args, **kwargs)
- __init__(*args, **kwargs)
Wraps an environment to allow a modular transformation of the
step()andreset()methods.- Parameters:
env – The environment to wrap
Methods
__init__(*args, **kwargs)Wraps an environment to allow a modular transformation of the
step()andreset()methods.class_name()Returns the class name of the wrapper.
close()Closes the wrapper and
env.get_wrapper_attr(name)Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.
has_wrapper_attr(name)Checks if the given attribute is within the wrapper or its environment.
render()Uses the
render()of theenvthat can be overwritten to change the returned data.reset([seed, options])Resets the environment.
set_wrapper_attr(name, value, *[, force])Sets an attribute on this wrapper or lower environment if name is already defined.
step(action)Performs the action in the new environment.
wrapper_spec(**kwargs)Generates a WrapperSpec for the wrappers.
Attributes
action_spaceReturn the
Envaction_spaceunless overwritten then the wrapperaction_spaceis used.metadataReturns the
Envmetadata.np_randomReturns the
Envnp_randomattribute.np_random_seedReturns the base environment's
np_random_seed.observation_spaceReturn the
Envobservation_spaceunless overwritten then the wrapperobservation_spaceis used.render_modeReturns the
Envrender_mode.specReturns the
Envspecattribute with the WrapperSpec if the wrapper inherits from EzPickle.unwrappedReturns the base environment of the wrapper.
- logger = <Logger WRAPPER MultiObsWrapper (INFO)>
- reset(seed: int | None = None, options: Dict[str, Any] | None = None) Tuple[ndarray, Dict[str, Any]]
Resets the environment.
- Returns:
Stacked previous observations.
- Return type:
np.ndarray
- step(action: ndarray) Tuple[ndarray, SupportsFloat, bool, bool, Dict[str, Any]]
Performs the action in the new environment.
- Parameters:
action (np.ndarray) – Action to be executed in environment.
- Returns:
Tuple with next observation, reward, bool for terminated episode and dict with extra information.
- Return type:
Tuple[np.ndarray, SupportsFloat, bool, Dict[str, Any]]