sinergym.utils.wrappers.ScheduledContextWrapper
- class sinergym.utils.wrappers.ScheduledContextWrapper(*args, **kwargs)
- __init__(*args, **kwargs)
Wraps an environment to allow a modular transformation of the
step()andreset()methods.- Parameters:
env – The environment to wrap
Methods
__init__(*args, **kwargs)Wraps an environment to allow a modular transformation of the
step()andreset()methods.class_name()Returns the class name of the wrapper.
close()Closes the wrapper and
env.get_obs_dict(obs)Convert observation array to dictionary with variable names as keys.
get_wrapper_attr(name)Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.
has_wrapper_attr(name)Checks if the given attribute is within the wrapper or its environment.
render()Uses the
render()of theenvthat can be overwritten to change the returned data.reset(*[, seed, options])Uses the
reset()of theenvthat can be overwritten to change the returned data.set_wrapper_attr(name, value, *[, force])Sets an attribute on this wrapper or lower environment if name is already defined.
step(action)Executes an action and checks if context should be updated based on current datetime.
wrapper_spec(**kwargs)Generates a WrapperSpec for the wrappers.
Attributes
action_spaceReturn the
Envaction_spaceunless overwritten then the wrapperaction_spaceis used.metadataReturns the
Envmetadata.np_randomReturns the
Envnp_randomattribute.np_random_seedReturns the base environment's
np_random_seed.observation_spaceReturn the
Envobservation_spaceunless overwritten then the wrapperobservation_spaceis used.render_modeReturns the
Envrender_mode.specReturns the
Envspecattribute with the WrapperSpec if the wrapper inherits from EzPickle.unwrappedReturns the base environment of the wrapper.
- logger = <Logger WRAPPER ScheduledContextWrapper (INFO)>
- step(action: ndarray) Tuple[ndarray, SupportsFloat, bool, bool, Dict[str, Any]]
Executes an action and checks if context should be updated based on current datetime.
After executing the action, this method checks if the current simulation datetime matches any key in the configuration dictionary. If a match is found, the corresponding context values are applied.
- Parameters:
action (np.ndarray) – Action selected by the agent.
- Returns:
- Standard Gymnasium step
return containing: - Observation for next timestep - Reward obtained - Whether the episode has ended (terminated) - Whether episode has been truncated - Dictionary with extra information (must contain ‘month’, ‘day’, ‘hour’ keys)
- Return type:
Tuple[np.ndarray, SupportsFloat, bool, bool, Dict[str, Any]]