sinergym.utils.wrappers.WeatherForecastingWrapper
- class sinergym.utils.wrappers.WeatherForecastingWrapper(*args, **kwargs)
- __init__(*args, **kwargs)
Wraps an environment to allow a modular transformation of the
step()andreset()methods.- Parameters:
env – The environment to wrap
Methods
__init__(*args, **kwargs)Wraps an environment to allow a modular transformation of the
step()andreset()methods.class_name()Returns the class name of the wrapper.
close()Closes the wrapper and
env.get_wrapper_attr(name)Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.
has_wrapper_attr(name)Checks if the given attribute is within the wrapper or its environment.
observation(obs, info)Build the state observation by adding weather forecast information.
render()Uses the
render()of theenvthat can be overwritten to change the returned data.reset([seed, options])Resets the environment.
Set the weather data used to build de state observation.
set_wrapper_attr(name, value, *[, force])Sets an attribute on this wrapper or lower environment if name is already defined.
step(action)Performs the action in the new environment.
wrapper_spec(**kwargs)Generates a WrapperSpec for the wrappers.
Attributes
action_spaceReturn the
Envaction_spaceunless overwritten then the wrapperaction_spaceis used.metadataReturns the
Envmetadata.np_randomReturns the
Envnp_randomattribute.np_random_seedReturns the base environment's
np_random_seed.observation_spaceReturn the
Envobservation_spaceunless overwritten then the wrapperobservation_spaceis used.render_modeReturns the
Envrender_mode.specReturns the
Envspecattribute with the WrapperSpec if the wrapper inherits from EzPickle.unwrappedReturns the base environment of the wrapper.
- logger = <Logger WRAPPER WeatherForecastingWrapper (INFO)>
- observation(obs: ndarray, info: Dict[str, Any]) ndarray
Build the state observation by adding weather forecast information.
- Parameters:
obs (np.ndarray) – Original observation.
info (Dict[str, Any]) – Information about the environment.
- Returns:
Transformed observation.
- Return type:
np.ndarray
- reset(seed: int | None = None, options: Dict[str, Any] | None = None) Tuple[ndarray, Dict[str, Any]]
Resets the environment.
- Returns:
Tuple with next observation, and dict with information about the environment.
- Return type:
Tuple[np.ndarray,Dict[str,Any]]
- set_forecast_data() None
Set the weather data used to build de state observation. If forecast_variability is not None, it applies Ornstein-Uhlenbeck process to the data.
- step(action: ndarray) Tuple[ndarray, SupportsFloat, bool, bool, Dict[str, Any]]
Performs the action in the new environment.
- Parameters:
action (np.ndarray) – Action to be executed in environment.
- Returns:
Tuple with next observation, reward, bool for terminated episode and dict with Information about the environment.
- Return type:
Tuple[np.ndarray, SupportsFloat, bool, bool, Dict[str, Any]]