sinergym.utils.wrappers.EnergyCostWrapper
- class sinergym.utils.wrappers.EnergyCostWrapper(env: Env, energy_cost_data_file: str, reward_kwargs: Dict[str, Any] | None = {'energy_cost_variables': ['energy_cost'], 'energy_variables': ['HVAC_electricity_demand_rate'], 'energy_weight': 0.4, 'lambda_energy': 0.0001, 'lambda_energy_cost': 1.0, 'lambda_temperature': 1.0, 'range_comfort_summer': [23.0, 26.0], 'range_comfort_winter': [20.0, 23.5], 'temperature_variables': ['air_temperature'], 'temperature_weight': 0.4}, energy_cost_variability: Tuple[float, float, float] | None = None)
- __init__(env: Env, energy_cost_data_file: str, reward_kwargs: Dict[str, Any] | None = {'energy_cost_variables': ['energy_cost'], 'energy_variables': ['HVAC_electricity_demand_rate'], 'energy_weight': 0.4, 'lambda_energy': 0.0001, 'lambda_energy_cost': 1.0, 'lambda_temperature': 1.0, 'range_comfort_summer': [23.0, 26.0], 'range_comfort_winter': [20.0, 23.5], 'temperature_variables': ['air_temperature'], 'temperature_weight': 0.4}, energy_cost_variability: Tuple[float, float, float] | None = None)
Adds energy cost information to the current observation.
- Parameters:
env (Env) – Original Gym environment.
energy_cost_data_file (str) – file from which the energy cost data is obtained
energy_cost_variability (Tuple[float,float,float], optional) – variation for energy cost data
reward_kwargs (Dict[str, Any], optional) – Parameters for customizing the reward function.
Methods
__init__
(env, energy_cost_data_file[, ...])Adds energy cost information to the current observation.
Modify energy cost data using Ornstein-Uhlenbeck process according to the variation specified in the energy_cost_variability variable.
class_name
()Returns the class name of the wrapper.
close
()Closes the wrapper and
env
.get_wrapper_attr
(name)Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.
observation
(obs, info)Build the state observation by adding energy cost information.
render
()Uses the
render()
of theenv
that can be overwritten to change the returned data.reset
([seed, options])Resets the environment.
Sets the cost of energy data used to construct the state observation.
step
(action)Performs the action in the new environment.
wrapper_spec
(**kwargs)Generates a WrapperSpec for the wrappers.
Attributes
action_space
Return the
Env
action_space
unless overwritten then the wrapperaction_space
is used.metadata
Returns the
Env
metadata
.np_random
Returns the
Env
np_random
attribute.observation_space
Return the
Env
observation_space
unless overwritten then the wrapperobservation_space
is used.render_mode
Returns the
Env
render_mode
.reward_range
Return the
Env
reward_range
unless overwritten then the wrapperreward_range
is used.spec
Returns the
Env
spec
attribute with the WrapperSpec if the wrapper inherits from EzPickle.unwrapped
Returns the base environment of the wrapper.
- apply_ou_variability()
Modify energy cost data using Ornstein-Uhlenbeck process according to the variation specified in the energy_cost_variability variable.
- logger = <Logger WRAPPER EnergyCostWrapper (INFO)>
- observation(obs, info)
Build the state observation by adding energy cost information.
- Parameters:
obs (np.ndarray) – Original observation.
info (Dict[str, Any]) – Information about the enviroment.
- Returns:
Transformed observation.
- Return type:
np.ndarray
- reset(seed: int | None = None, options: Dict[str, Any] | None = None) Tuple[ndarray, Dict[str, Any]]
Resets the environment.
- Returns:
Tuple with next observation, and dict with information about the enviroment.
- Return type:
Tuple[np.ndarray,Dict[str,Any]]
- set_energy_cost_data()
Sets the cost of energy data used to construct the state observation.
- step(action: int | ndarray) Tuple[ndarray, float, bool, bool, Dict[str, Any]]
Performs the action in the new environment.
- Parameters:
action (Union[int, np.ndarray]) – Action to be executed in environment.
- Returns:
Tuple with next observation, reward, bool for terminated episode and dict with Information about the enviroment.
- Return type:
Tuple[np.ndarray, float, bool, Dict[str, Any]]