sinergym.utils.wrappers.EnergyCostWrapper
- class sinergym.utils.wrappers.EnergyCostWrapper(env: Env, energy_cost_data_path: str, reward_kwargs: Dict[str, Any] | None = {'energy_cost_variables': ['energy_cost'], 'energy_variables': ['HVAC_electricity_demand_rate'], 'energy_weight': 0.4, 'lambda_energy': 0.0001, 'lambda_energy_cost': 1.0, 'lambda_temperature': 1.0, 'range_comfort_summer': [23.0, 26.0], 'range_comfort_winter': [20.0, 23.5], 'temperature_variables': ['air_temperature'], 'temperature_weight': 0.4}, energy_cost_variability: Tuple[float, float, float] | None = None)
- __init__(env: Env, energy_cost_data_path: str, reward_kwargs: Dict[str, Any] | None = {'energy_cost_variables': ['energy_cost'], 'energy_variables': ['HVAC_electricity_demand_rate'], 'energy_weight': 0.4, 'lambda_energy': 0.0001, 'lambda_energy_cost': 1.0, 'lambda_temperature': 1.0, 'range_comfort_summer': [23.0, 26.0], 'range_comfort_winter': [20.0, 23.5], 'temperature_variables': ['air_temperature'], 'temperature_weight': 0.4}, energy_cost_variability: Tuple[float, float, float] | None = None)
- Adds energy cost information to the current observation. - Parameters:
- env (Env) – Original Gym environment. 
- energy_cost_data_path (str) – Pathfile from which the energy cost data is obtained. 
- energy_cost_variability (Tuple[float,float,float], optional) – variation for energy cost data for OU process (sigma, mu and tau). 
- reward_kwargs (Dict[str, Any], optional) – Parameters for customizing the reward function. 
 
 
 - Methods - __init__(env, energy_cost_data_path[, ...])- Adds energy cost information to the current observation. - class_name()- Returns the class name of the wrapper. - close()- Closes the wrapper and - env.- get_wrapper_attr(name)- Gets an attribute from the wrapper and lower environments if name doesn't exist in this object. - has_wrapper_attr(name)- Checks if the given attribute is within the wrapper or its environment. - observation(obs, info)- Build the state observation by adding energy cost information. - render()- Uses the - render()of the- envthat can be overwritten to change the returned data.- reset([seed, options])- Resets the environment. - Sets the cost of energy data used to construct the state observation. - set_wrapper_attr(name, value, *[, force])- Sets an attribute on this wrapper or lower environment if name is already defined. - step(action)- Performs the action in the new environment. - wrapper_spec(**kwargs)- Generates a WrapperSpec for the wrappers. - Attributes - action_space- Return the - Env- action_spaceunless overwritten then the wrapper- action_spaceis used.- metadata- Returns the - Env- metadata.- np_random- Returns the - Env- np_randomattribute.- np_random_seed- Returns the base environment's - np_random_seed.- observation_space- Return the - Env- observation_spaceunless overwritten then the wrapper- observation_spaceis used.- render_mode- Returns the - Env- render_mode.- spec- Returns the - Env- specattribute with the WrapperSpec if the wrapper inherits from EzPickle.- unwrapped- Returns the base environment of the wrapper. - logger = <Logger WRAPPER EnergyCostWrapper (INFO)>
 - observation(obs: ndarray, info: Dict[str, Any]) ndarray
- Build the state observation by adding energy cost information. - Parameters:
- obs (np.ndarray) – Original observation. 
- info (Dict[str, Any]) – Information about the environment. 
 
- Returns:
- Transformed observation. 
- Return type:
- np.ndarray 
 
 - reset(seed: int | None = None, options: Dict[str, Any] | None = None) Tuple[ndarray, Dict[str, Any]]
- Resets the environment. - Returns:
- Tuple with next observation, and dict with information about the environment. 
- Return type:
- Tuple[np.ndarray,Dict[str,Any]] 
 
 - set_energy_cost_data()
- Sets the cost of energy data used to construct the state observation. 
 - step(action: int | ndarray) Tuple[ndarray, float, bool, bool, Dict[str, Any]]
- Performs the action in the new environment. - Parameters:
- action (Union[int, np.ndarray]) – Action to be executed in environment. 
- Returns:
- Tuple with next observation, reward, bool for terminated episode and dict with Information about the environment. 
- Return type:
- Tuple[np.ndarray, float, bool, Dict[str, Any]]