sinergym.utils.wrappers.VariabilityContextWrapper

class sinergym.utils.wrappers.VariabilityContextWrapper(*args, **kwargs)
__init__(*args, **kwargs)

Wraps an environment to allow a modular transformation of the step() and reset() methods.

Parameters:

env – The environment to wrap

Methods

__init__(*args, **kwargs)

Wraps an environment to allow a modular transformation of the step() and reset() methods.

class_name()

Returns the class name of the wrapper.

close()

Closes the wrapper and env.

get_wrapper_attr(name)

Gets an attribute from the wrapper and lower environments if name doesn't exist in this object.

has_wrapper_attr(name)

Checks if the given attribute is within the wrapper or its environment.

render()

Uses the render() of the env that can be overwritten to change the returned data.

reset(*[, seed, options])

Uses the reset() of the env that can be overwritten to change the returned data.

set_wrapper_attr(name, value, *[, force])

Sets an attribute on this wrapper or lower environment if name is already defined.

step(action)

Executes an action and updates the environment's context if needed.

wrapper_spec(**kwargs)

Generates a WrapperSpec for the wrappers.

Attributes

action_space

Return the Env action_space unless overwritten then the wrapper action_space is used.

logger

metadata

Returns the Env metadata.

np_random

Returns the Env np_random attribute.

np_random_seed

Returns the base environment's np_random_seed.

observation_space

Return the Env observation_space unless overwritten then the wrapper observation_space is used.

render_mode

Returns the Env render_mode.

spec

Returns the Env spec attribute with the WrapperSpec if the wrapper inherits from EzPickle.

unwrapped

Returns the base environment of the wrapper.

logger = <Logger WRAPPER VariabilityContextWrapper (INFO)>
step(action: ndarray) Tuple[ndarray, float, bool, bool, Dict[str, Any]]

Executes an action and updates the environment’s context if needed.

Parameters:

action (np.ndarray) – Action selected by the agent.

Returns:

Observation for next timestep, reward obtained, Whether the episode has ended or not, Whether episode has been truncated or not, and a dictionary with extra information

Return type:

Tuple[np.ndarray, float, bool, Dict[str, Any]]