sinergym.envs.eplus_env.EplusEnv
- class sinergym.envs.eplus_env.EplusEnv(building_file: str, weather_files: str | ~typing.List[str], action_space: ~gymnasium.spaces.box.Box = Box([], [], (0,), float32), time_variables: ~typing.List[str] = [], variables: ~typing.Dict[str, ~typing.Tuple[str, str]] = {}, meters: ~typing.Dict[str, str] = {}, actuators: ~typing.Dict[str, ~typing.Tuple[str, str, str]] = {}, weather_variability: ~typing.Dict[str, ~typing.Tuple[float, float, float]] | None = None, reward: ~typing.Any = <class 'sinergym.utils.rewards.LinearReward'>, reward_kwargs: ~typing.Dict[str, ~typing.Any] | None = {}, max_ep_data_store_num: int = 10, env_name: str = 'eplus-env-v1', config_params: ~typing.Dict[str, ~typing.Any] | None = None)
- __init__(building_file: str, weather_files: str | ~typing.List[str], action_space: ~gymnasium.spaces.box.Box = Box([], [], (0,), float32), time_variables: ~typing.List[str] = [], variables: ~typing.Dict[str, ~typing.Tuple[str, str]] = {}, meters: ~typing.Dict[str, str] = {}, actuators: ~typing.Dict[str, ~typing.Tuple[str, str, str]] = {}, weather_variability: ~typing.Dict[str, ~typing.Tuple[float, float, float]] | None = None, reward: ~typing.Any = <class 'sinergym.utils.rewards.LinearReward'>, reward_kwargs: ~typing.Dict[str, ~typing.Any] | None = {}, max_ep_data_store_num: int = 10, env_name: str = 'eplus-env-v1', config_params: ~typing.Dict[str, ~typing.Any] | None = None)
Environment with EnergyPlus simulator.
- Parameters:
building_file (str) – Name of the JSON file with the building definition.
weather_files (Union[str,List[str]]) – Name of the EPW file for weather conditions. It can be specified a list of weathers files in order to sample a weather in each episode randomly.
action_space (gym.spaces.Box, optional) – Gym Action Space definition. Defaults to an empty action_space (no control).
time_variables (List[str]) – EnergyPlus time variables we want to observe. The name of the variable must match with the name of the E+ Data Transfer API method name. Defaults to empty list.
variables (Dict[str, Tuple[str, str]]) – Specification for EnergyPlus Output:Variable. The key name is custom, then tuple must be the original variable name and the output variable key. Defaults to empty dict.
meters (Dict[str, str]) – Specification for EnergyPlus Output:Meter. The key name is custom, then value is the original EnergyPlus Meters name.
actuators (Dict[str, Tuple[str, str, str]]) – Specification for EnergyPlus Input Actuators. The key name is custom, then value is a tuple with actuator type, value type and original actuator name. Defaults to empty dict.
Optional[Dict[str (weather_variability) – Tuple with sigma, mu and tao of the Ornstein-Uhlenbeck process for each desired variable to be applied to weather data. Defaults to None.
Tuple[float – Tuple with sigma, mu and tao of the Ornstein-Uhlenbeck process for each desired variable to be applied to weather data. Defaults to None.
float – Tuple with sigma, mu and tao of the Ornstein-Uhlenbeck process for each desired variable to be applied to weather data. Defaults to None.
float]]] – Tuple with sigma, mu and tao of the Ornstein-Uhlenbeck process for each desired variable to be applied to weather data. Defaults to None.
reward (Any, optional) – Reward function instance used for agent feedback. Defaults to LinearReward.
reward_kwargs (Optional[Dict[str, Any]], optional) – Parameters to be passed to the reward function. Defaults to empty dict.
max_ep_data_store_num (int, optional) – Number of last sub-folders (one for each episode) generated during execution on the simulation.
env_name (str, optional) – Env name used for working directory generation. Defaults to eplus-env-v1.
config_params (Optional[Dict[str, Any]], optional) – Dictionary with all extra configuration for simulator. Defaults to None.
Methods
__init__
(building_file, weather_files[, ...])Environment with EnergyPlus simulator.
close
()End simulation.
get_wrapper_attr
(name)Gets the attribute name from the environment.
info
()render
([mode])Environment rendering.
reset
([seed, options])Reset the environment.
step
(action)Sends action to the environment.
Attributes
np_random
Returns the environment's internal
_np_random
that if not set will initialise with a random seed.render_mode
reward_range
spec
unwrapped
Returns the base non-wrapped environment.
- property action_space: Space[Any]
- property actuator_handlers: Dict[str, int] | None
- property available_handlers: str | None
- property building_path: str
- close() None
End simulation.
- property ddy_path: str
- property episode_length: float
- property episode_path: str
- property idd_path: str
- info()
- property is_discrete: bool
- property is_running: bool
- logger = <Logger ENVIRONMENT (INFO)>
- metadata: dict[str, Any] = {'render_modes': ['human']}
- property meter_handlers: Dict[str, int] | None
- property observation_space: Space[Any]
- render(mode: str = 'human') None
Environment rendering.
- Parameters:
mode (str, optional) – Mode for rendering. Defaults to ‘human’.
- reset(seed: int | None = None, options: Dict[str, Any] | None = None) Tuple[ndarray, Dict[str, Any]]
Reset the environment.
- Parameters:
seed (Optional[int]) – The seed that is used to initialize the environment’s episode (np_random). if value is None, a seed will be chosen from some source of entropy. Defaults to None.
options (Optional[Dict[str, Any]]) – Additional information to specify how the environment is reset. Defaults to None.
- Returns:
Current observation and info context with additional information.
- Return type:
Tuple[np.ndarray,Dict[str,Any]]
- property runperiod: Dict[str, int]
- property schedulers: Dict[str, Dict[str, str | Dict[str, str]]]
- simple_printer = <Logger Printer (INFO)>
- step(action: int | float | integer | ndarray | List[Any] | Tuple[Any]) Tuple[ndarray, float, bool, bool, Dict[str, Any]]
Sends action to the environment.
- Parameters:
action (Union[int, float, np.integer, np.ndarray, List[Any], Tuple[Any]]) – Action selected by the agent.
- Returns:
Observation for next timestep, reward obtained, Whether the episode has ended or not, Whether episode has been truncated or not, and a dictionary with extra information
- Return type:
Tuple[np.ndarray, float, bool, Dict[str, Any]]
- property step_size: float
- property timestep_per_episode: int
- property var_handlers: Dict[str, int] | None
- property weather_path: str
- property workspace_path: str
- property zone_names: list